Tools for effective science communication

Interpreting your data

Dylan Taillie \& Caroline Donovan

CMC Introduction to Data Interpretation Workshop January 30, 2018

Interpretation

- Evaluating and analyzing your data in order to communicate it in a meaningful way with your selected audience

Data

Interpretation

Synthesis

Kinds of data

- Nominal
- Non-numerical
- Qualitative

Types of aquatic plants

Kinds of data

- Ordinal
- Numerical
- Quantitative

Health of benthic macroinvertebrates collected in
streams around Maryland

Percent annual reduction of carbon dioxide-equivalent by sector

Kinds of data

- Interval

- Basic WQ data

- Distance between numbers

Annual average air temperature in Maryland

Sampling Location	Dissolved Oxygen (mg/L)
Choptank River	6.0
Elizabeth River	4.0
James River	6.3
Lower Bay	7.1
Lower Eastern Shore	6.3
Lower Western Shore	5.5
Mid Bay	4.2
Patapsco River	3.9
Patuxent River	4.2
Potomac River	5.7
Rappahannock River	6.1
Upper Bay	6.3
Upper Eastern Shore	6.9
Upper Western Shore	7.5
York River	5.4

- Ratio
- Similar to interval
- Absolute zero

Precision vs Accuracy

- Accuracy is how close a measurement is to a real value
- Precision is when repeated measurements closely match each other

Precision vs Accuracy

- Accuracy is how close a measurement is to a real value
- Precision is when repeated measurements closely match each other

WQ Parameter	Equipment	Precision	Accuracy	Range
Dissolved oxygen	LaMotte 5860	$0.2 \mathrm{mg} / \mathrm{L}$		$0-10+\mathrm{mg} / \mathrm{L}$
Dissolved oxygen	Ex. LaMotte 1761	$0.01 \mathrm{mg} / \mathrm{L}$	$\pm 2 \% \mathrm{FS}$	$0-20 \mathrm{mg} / \mathrm{L}$
Nitrate-nitrogen	Hach NI-14 1416100	$0.01 \mathrm{mg} / \mathrm{L}$		$0-1 \mathrm{mg} / \mathrm{L} ;$
		$(0-1 \mathrm{mg} / \mathrm{L}) ;$		$1-10 \mathrm{mg} / \mathrm{L}$
		$0.1 \mathrm{mg} / \mathrm{L}$		
		$(1-10 \mathrm{mg} / \mathrm{L})$		
Nitrate-nitrogen	LaMotte 3110	$0.25,0.5,1,2,4,6,8$,		
		$10 \mathrm{mg} / \mathrm{L}$		
Nitrate-nitrogen	LaMotte 3354	$0,1,2,4,6,8,10,15$		$0-10 \mathrm{mg} / \mathrm{L}$
		mg / L		

Activity - Cleaning your data in excel

- Cleaning is required before you interpret your data
- What does cleaning my data mean?
- Formatting your spreadsheet so it's consistent
- Flagging unusual or duplicate data

Excel activity - step 1

- Are there headers with units associated with the data values?
- Do the rows and columns have the right widths and heights to view all the data or is that even needed?
- Are there any missing data that are in another spreadsheet or on another tab that need to be incorporated here?

Should this be Conductivity?
Why are there two blank lines?

Should you add more tabs so that the data is organized by indicator? Or by surface vs bottom measurements? Or something else?

How are you going to address data values that are not numbers?

Excel activity - step 2

- How are the data organized? By date or sampling station? Which way is the best way to look at and interpret the data?
- Are there any duplicate entries? Why? Do you delete them altogether or save them "just in case"? How do you organize and structure your files to do this?
- Are there any unusual data? You can sort the data from high to low and determine if any values are outside the expected range. This could be due to typing errors, instrument error, or they could be genuine outliers

The column headers are bolded and each label makes sense and has appropriate units

Extra decimal point

Is this the correct sampling date? Check original fieldsheets or verify with field staff/volunteer monitor.

This row is duplicated. Do you delete it or keep it and flag it?

Excel activity - step 3

- Are there any cells that need to be changed from numbers to text or vice versa so that Excel can read them correctly?
- How are your latitude and longitude written? Is it in a format that works for you or for someone who will be doing GIS mapping?

This spreadsheet has been cleaned and simplified. Only columns pertaining to dissolved oxygen were kept. The tab is labelled appropriately. The columns have been sorted first by date, then by station.

		Home hsert	Page Layout				Acrobat	ryc 2011.ndsx - Microsoft Ext						
			From From other b Tent Sources: Gat Examal Data					I'Proportio Refresh AI. tee Edt Link Cornoctions		$\begin{gathered} \text { \% Clear } \\ \text { \% Fisapply } \\ \text { Fiter adiranced } \end{gathered}$ Sort \& Filter			Dots aidation " Data Tools	器 What-If Analyais:
52				$f=$										
4	A	B	c	D	E	F	G	H	1	J	K			
1	Site	Latitude	Longitude	Date	Depth (ft)	Salinity (psu)	Temperature (deg C)	$\begin{gathered} \mathrm{O}_{2} \\ (\mathrm{mg} \mathrm{I}) \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \text { Saturation } \\ \text { (\% sat) } \end{gathered}$	O_{2} (Wnklr)				
2	E10	40.843460	-73.764060	1/102011	3	26.42	1.35	11.73	99.7	11.74				
	E11	40.790280	-73.765620	1/10/2011	3	26.22	0.55	11.96	99.4	13.07				
4	E14	40.800480	-73.864330	1/10/2011	4	23.87	2.60	11.02	95.1	11.43				
5	E15	40.782900	-73.849110	1/10/2011	3	25.01	1.21	11.58	97.2	11.87				
	E4	40.782300	-73.921120	1/10/2011	3	20.86	2.71	11.41	96.8	11.98				
7	E6	40.785840	-73.861200	1/10/2011	3	25.09	2.31	11.08	95.7	11.57				
	E7	40.802800	-73.819960	1/10:2011	3	25.47	2.07	11.24	96.7	11.40				
9	E8	40.801560	-73.780740	1/10/2011	3	26.25	1.83	11.45	98.5	11.91				
10	FLC1	40.761980	-73.838660	1/10/2011	3	24.47	1.05	10.90	90.7	11.23				
11	FLC2	40.765100	-73.843100	1/10/2011	4	24.39	0.79	11.44	94.5	11.97				
	LN1	40.775840	-73.701040	1/11/2011	3	26.25	0.51	11.98	99.5	12.47				
13	E10	40.843420	-73.764560	2/7/2011	3	26.56	0.49	14.08	117.0	16.09				
14	E11	40.790720	-73.765880	2/7/2011	3	25.82	0.82	13.44	112.2	15.75				
15	E14	40.800780	-73.864960	27/2011	3	24.57	1.26	12.08	101.1	14.98				
16	E15	40.763080	-73.849270	27/2011	3	24.29	1.80	13.34	113.1	15.54				
	E4	40.781900	-73.922040	2/7/2011	3	23.40	1.70	11.56	97.2	13.80				
18	E6	40.786340	-73.861500	27/2011	3	24.00	1.60	13.59	114.4	14.90				
19	E7	40.803270	-73.819840	2/7/2011	3	24.84	1.18	13.23	110.9	14.51				
20	E8	40.801980	-73.781000	2/7/2011	3	25.67	0.91	13.68	114.4	14.88				
21	FB1	40.772820	-73.853280	2/7/2011	3	24.29	1.82	13.25	112.2	16.04				
22	FB1	40.772820	-73.853280	277/2011	3	24.29	1.82	13.25	112.2	16.04				
23	FLC1	40.762090	-73.838760	27/2011	3	24.14	1.53	11.14	93.7	14.68				
24	FLC2	40.765080	-73.842840	2/7/2011	3	23.93	2.15	12.59	107.6	15.90				
25	BR5	40.813700	-73.871500	5/16/2011	3	22.09	12.38	6.95	74.7	9.46				
26	E10	40.842550	-73.765230	5/16/2011	3	23.99	12.07	8.70	94.1	9.19				
27	E11	40.790120	-73.766140	5/16/2011	3	23.30	12.18	7.71	83.2	8.67				
28	E14	40.800850	-73.864650	5/16/2011	3	22.99	12.23	7.64	82.4	8.37				
29	E15	40.762960	-73.849400	5/16/2011	3	22.04	13.05	7.19	78.4	8.08				
	E4	40.781940	-73.922770	5/16/2011	3	22.56	12.28	7.12	76.6	7.96				
	E6	40.785950	-73.861140	5/16/2011	3	22.23	12.52	7.08	76.5	7.78				
	E7	40.803300	-73.820050	5/16/2011	3	23.59	11.92	7.86	84.4	8.64				
	E8	40.801310	-73.781740	5/16/2011	3	23.24	12.00	7.43	79.8	8.26				
	¢8:	Hasbor Survey aldata org			HarborSunveyald savableesorb				$\begin{aligned} & 707 \\ & \text { HarborSurveyDisOxy } \end{aligned}$					
Peady.														

Using statistics to describe your data

- What are descriptive statistics?
- Tools to provide basic summarized information about your data
- Mean, median and mode

Sample site	Caddisfly (count)	Mayfly (count)	Stonefly (count)	Clams (count)	Aquatic worms (count)	Crayfish (count)	\% Sensitive to Pollution
A1	2	3	1	15	2	4	22
A2	1	1	1	5	7	11	12
GP1	0	0	0	13	16	9	0
GP2	4	7	4	8	12	3	40
GP3	4	5	2	12	10	9	33
D1	6	6	9	11	7	4	49
B11	0	1	2	8	9	12	1
mean	2.4	3.3	2.7	10.3	9.0	7.4	22.4%
median	2	3	2	11	9	9	22%
mode	0	1	1	8	7	4	N/A

Using statistics to describe your data (cont.)

- Range
- The total spread of all values in a dataset

> Median and Quartiles

Interquartile range
Q1 - Q3

Using statistics to describe your data (cont.)

- Outliers
- Data values that fall outside the general distribution of the data
- Standard deviation
- Distance from mean
- Variability
- Standard error
- Type of SD
- Depends on sample size

Using statistics to describe your data (cont.)

- Bell curves
- Normal distribution
- 95\% of data within 2 SD

Using statistics to describe your data (cont.)

- Non-normal distribution

Using statistics to describe your data (cont.)

- Correlation
- Two variables related
- Temperature \& DO

Displaying data

- Data in tables - why use a table?
- Parts of a table

Formatting a table for your audience

EXAMPLE 3: BASIC TABLE WITH SCIENCE COMMUNICATION PRINCIPLES EMBEDDED

Sample site	Caddisfly	Mayfly	Stonefly	Clams	Aquatic worms	Crayfish	\% Sensitive to Pollution
Anacostia 1	2	3	1	15	2	4	22
Anacostia 2	1	1	1	5	7	11	12
Gunpowder 1	0	0	0	13	16	9	0
Gunpowder 2	4	7	4	8	12	3	40
Gunpowder 3	4	5	2	12	10	9	33
Davis Branch 1	6	6	9	11	7	4	49
Big Elk 11	0	1	2	8	9	12	1

Data in graphs

- Graphing data is the easiest way to visualize your data
- Help you too:
- See relationships between different measurements in the data
- Identify outliers
- Visualize and identify trends

Types of graphs

- Bar graph
- Line graph
- Pie graph
- Comparison bar graph

Choosing a graph and formatting - bar graph

EXAMPLE 2: AFTER FORMATTING, BAR GRAPH

Gracilaria is nitrogen-limited

Choosing a graph and formatting - line graph

EXAMPLE A: AFTER FORMATTING, LINE GRAPH

Zostera seagrass grows fastest in summer months

Choosing a graph and formatting - pie graph

Land use by area

Submerged aquatic vegetation (SAV) area (hectares) in the York River

	Bed density				
Sample site and year	$0-10 \%$	$10-40 \%$	$40-70 \%$	$70-100 \%$	Total
York tidal fresh 2005	7	16	21	81	125
York oligohaline 2005	1	10	8	34	53
York total 2005	8	50	29	115	178
York tidal fresh 2010	2	22	13	73	110
York oligohaline 2010	0	28	32	143	203
York total 2010	2	50	45	216	313
York tidal fresh 2015	37	14	16	167	234
York oligohaline 2015	15	135	44	188	367
York total 2015	72	149	60	355	601

SAV area by sample site

Total SAV area

2015 SAV area

Data in figures

- Help readers visually connect information
- Connect numbers from graphs to general patterns and trends or show information on a geographic scale

Data in figures

- Parts of a figure
- Maps
- Graphs
- Photos
- Text
- Caption
- Title

Figure example

Overall eutrophic condition of coastal lagoons in the United States, early 2000s

Figure example

Flow rate \& nitrogen concentrations in Bassett Creek

Summary

- Start small, let the data lead you
- What kind of data are you collecting?
- What is the best way to organize your data?
- What is the best graph for your data?
- Will a figure help explain your data?
- Thanks for joining us and let Caroline and I know if you have any questions!

Now go back and choose the best display type for your parameter!

